29 const vec3 oc = r.origin() - center;
30 const float a =
dot(r.direction(), r.direction());
31 const float b =
dot(oc, r.direction());
33 const float discriminant = b * b - a * c;
38 const float d =
sqrt(discriminant);
39 float rv0 = (-b - d) / a;
40 float rv1 = (-b + d) / a;
Represents a geometric ray in 3D space.
vec3 PointAtParameter(float t) const
Computes a point along the ray based on the given parameter.
constexpr vec3 const & origin() const noexcept
Retrieves the ray's origin (const version).
Contains mathematical utility functions and classes.
constexpr T length(qua< T > const &q) noexcept
Computes the length (or magnitude) of a quaternion.
constexpr T dot(qua< T > const &left, qua< U > const &right) noexcept
Computes the dot product of two quaternions.
constexpr qua< T > normalize(qua< T > const &q) noexcept
Normalizes a quaternion.
Contains the definition of the Ray class.
Represents the data of a ray's intersection with an object.
float t
The intersection parameter.
vec3 point
The 3D point of intersection.
vec3 normal
The 3D normal at the point of intersection.
A geometric representation of a sphere in 3D space.
bool Intersect(Intersection &i, Ray const &ray) const
Determines if a Ray intersects with the Sphere.
vec3 position
Position of the sphere's center in 3D space.
float radius
Radius of the sphere.
static constexpr float Hit(Ray const &r, vec3 const ¢er, float radius) noexcept
Determines the intersection point of a Ray with the Sphere.