mal-math
C++20 mathematics library.
All Classes Namespaces Files Functions Variables Typedefs Concepts
quaternion.inl
Go to the documentation of this file.
1#pragma once
2#include "quaternion.hpp"
3
4namespace mal_math
5{
6 template <Primitive T>
7 constexpr qua<T>::qua(T w, T x, T y, T z)
8 {
9 this->w = w;
10 this->x = x;
11 this->y = y;
12 this->z = z;
13 }
14 template <Primitive T>
15 constexpr void qua<T>::reset()
16 {
17 x = y = z = T(0);
18 w = T(1);
19 }
20
21 template <Primitive T>
22 constexpr qua<T>::qua(T radians, vec<3, T> axis)
23 {
24 if (length(axis) != 0)
25 {
26 axis = normalize(axis);
27 }
28 w = cos(radians / 2);
29 auto const ss = sin(radians / 2);
30 x = axis.x * ss;
31 y = axis.y * ss;
32 z = axis.z * ss;
33 }
34
35 template <Primitive T>
36 [[nodiscard]] constexpr mat<3, 3, T> qua<T>::as_mat3() const noexcept
37 {
38 mat<3, 3, T> return_value(T(1));
39 T qxx(x * x);
40 T qyy(y * y);
41 T qzz(z * z);
42 T qxz(x * z);
43 T qxy(x * y);
44 T qyz(y * z);
45 T qwx(w * x);
46 T qwy(w * y);
47 T qwz(w * z);
48
49 return_value[0][0] = T(1) - T(2) * (qyy + qzz);
50 return_value[1][0] = T(2) * (qxy - qwz);
51 return_value[2][0] = T(2) * (qxz + qwy);
52
53 return_value[0][1] = T(2) * (qxy + qwz);
54 return_value[1][1] = T(1) - T(2) * (qxx + qzz);
55 return_value[2][1] = T(2) * (qyz - qwx);
56
57 return_value[0][2] = T(2) * (qxz - qwy);
58 return_value[1][2] = T(2) * (qyz + qwx);
59 return_value[2][2] = T(1) - T(2) * (qxx + qyy);
60 return return_value;
61 }
62
63 template <Primitive T>
64 [[nodiscard]] constexpr mat<4, 4, T> qua<T>::as_mat4() const noexcept
65 {
66 return mat<4, 4, T>(as_mat3());
67 }
68 template <Primitive T>
69 [[nodiscard]] constexpr vec<3, T> const &qua<T>::axis() const noexcept
70 {
71 return *reinterpret_cast<vec<3, T> *>((void *)&x);
72 }
73 template <Primitive T>
74 [[nodiscard]] constexpr T qua<T>::radians() const noexcept
75 {
76 return w;
77 }
78
79 template <Primitive T>
80 [[nodiscard]] constexpr qua<T> const &qua<T>::operator+() const noexcept
81 {
82 return *this;
83 }
84 template <Primitive T>
85 [[nodiscard]] constexpr qua<T> qua<T>::operator-() const noexcept
86 {
87 return qua<T>(-x, -y, -z, -w);
88 }
89
90 template <Primitive T>
91 template <Primitive U>
92 constexpr qua<T> &qua<T>::operator*=(U const value) noexcept
93 {
94 x *= value;
95 y *= value;
96 z *= value;
97 w *= value;
98 return *this;
99 }
100 template <Primitive T>
101 template <Primitive U>
102 constexpr qua<T> &qua<T>::operator/=(U const value) noexcept
103 {
104 x /= value;
105 y /= value;
106 z /= value;
107 w /= value;
108 return *this;
109 }
110 template <Primitive T>
111 template <Primitive U>
112 constexpr qua<T> &qua<T>::operator+=(qua<U> const &other) noexcept
113 {
114 x += other.x;
115 y += other.y;
116 z += other.z;
117 w += other.w;
118 return *this;
119 }
120 template <Primitive T>
121 template <Primitive U>
122 constexpr qua<T> &qua<T>::operator-=(qua<U> const &other) noexcept
123 {
124 x -= other.x;
125 y -= other.y;
126 z -= other.z;
127 w -= other.w;
128 return *this;
129 }
130 template <Primitive T>
131 template <Primitive U>
132 constexpr qua<T> &qua<T>::operator*=(qua<U> const &other) noexcept
133 {
134 qua<T> const t0(*this);
135 qua<T> const t1(other);
136
137 this->w = t0.w * t1.w - t0.x * t1.x - t0.y * t1.y - t0.z * t1.z;
138 this->x = t0.w * t1.x + t0.x * t1.w + t0.y * t1.z - t0.z * t1.y;
139 this->y = t0.w * t1.y + t0.y * t1.w + t0.z * t1.x - t0.x * t1.z;
140 this->z = t0.w * t1.z + t0.z * t1.w + t0.x * t1.y - t0.y * t1.x;
141 return *this;
142 }
143 template <Primitive T>
144 template <Primitive U>
145 constexpr qua<T> &qua<T>::operator/=(qua<U> const &other) noexcept
146 {
147 x /= other.x;
148 y /= other.y;
149 z /= other.z;
150 w /= other.w;
151 return *this;
152 }
153
154 template <Primitive T>
155 [[nodiscard]] constexpr T &qua<T>::operator[](size_t i)
156 {
157 assert(i < 4);
158 return data[i];
159 }
160 template <Primitive T>
161 [[nodiscard]] constexpr T const &qua<T>::operator[](size_t i) const
162 {
163 assert(i < 4);
164 return data[i];
165 }
166 template <Primitive T>
167 constexpr std::istream &operator>>(std::istream &is, qua<T> &vec)
168 {
169 for (int i = 0; i < 4; i++)
170 {
171 is >> vec[i];
172 }
173 return is;
174 }
175 template <Primitive T>
176 constexpr std::ostream &operator<<(std::ostream &os, qua<T> &vec)
177 {
178 for (int i = 0; i < 4; i++)
179 {
180 os << vec[i] << " ";
181 }
182 return os;
183 }
184
185 template <Primitive T, Primitive U>
186 [[nodiscard]] constexpr qua<T> operator*(U const value, qua<T> const &vector) noexcept
187 {
188 return qua<T>(vector) *= value;
189 }
190 template <Primitive T, Primitive U>
191 [[nodiscard]] constexpr qua<T> operator/(U const value, qua<T> const &vector) noexcept
192 {
193 return qua<T>(value / vector.x, value / vector.y, value / vector.z, value / vector.w);
194 }
195 template <Primitive T, Primitive U>
196 [[nodiscard]] constexpr qua<T> operator*(qua<T> const &vector, U const value) noexcept
197 {
198 return qua<T>(vector) *= value;
199 }
200 template <Primitive T, Primitive U>
201 [[nodiscard]] constexpr qua<T> operator/(qua<T> const &vector, U const value) noexcept
202 {
203 return qua<T>(vector) /= value;
204 }
205 template <Primitive T, Primitive U>
206 [[nodiscard]] constexpr qua<T> operator+(qua<T> const &left, qua<U> const &right) noexcept
207 {
208 return qua<T>(left) += right;
209 }
210 template <Primitive T, Primitive U>
211 [[nodiscard]] constexpr qua<T> operator-(qua<T> const &left, qua<U> const &right) noexcept
212 {
213 return qua<T>(left) -= right;
214 }
215 template <Primitive T, Primitive U>
216 [[nodiscard]] constexpr qua<T> operator*(qua<T> const &left, qua<U> const &right) noexcept
217 {
218 return qua<T>(left) *= right;
219 }
220 template <Primitive T, Primitive U>
221 [[nodiscard]] constexpr qua<T> operator/(qua<T> const &left, qua<U> const &right) noexcept
222 {
223 return qua<T>(left) /= right;
224 }
225
226 template <Primitive T, Primitive U>
227 constexpr T dot(qua<T> const &left, qua<U> const &right) noexcept
228 {
229 T return_value = 0;
230 for (size_t i = 0; i < 4; i++)
231 {
232 return_value += left[i] * static_cast<T>(right[i]);
233 }
234 return return_value;
235 }
236
237 template <Primitive T>
238 [[nodiscard]] constexpr T angle(qua<T> const &quaternion) noexcept
239 {
240 if (abs(quaternion.w) > cos(0.5f))
241 {
242 T const a = asin(sqrt(quaternion.x * quaternion.x +
243 quaternion.y * quaternion.y +
244 quaternion.z * quaternion.z))
245 * static_cast<T>(2);
246 if (quaternion.w < static_cast<T>(0))
247 {
248 return static_cast<T>(std::numbers::pi * 2) - a;
249 }
250 return a;
251 }
252 return acos(quaternion.w) * T(2);
253 }
254
255 template <Primitive T>
256 [[nodiscard]] constexpr T pitch(qua<T> const &quaternion) noexcept
257 {
258 return std::atan2(
259 2 * (quaternion.y * quaternion.z + quaternion.w * quaternion.x),
260 quaternion.w * quaternion.w - quaternion.x * quaternion.x - quaternion.y * quaternion.y + quaternion.z * quaternion.z);
261 }
262 template <Primitive T>
263 [[nodiscard]] constexpr T yaw(qua<T> const &quaternion) noexcept
264 {
265 return std::asin(clamp(static_cast<T>(-2) * (quaternion.x * quaternion.z - quaternion.w * quaternion.y), static_cast<T>(-1), static_cast<T>(1)));
266 }
267 template <Primitive T>
268 [[nodiscard]] constexpr T roll(qua<T> const &quaternion) noexcept
269 {
270 return std::atan2(
271 2 * (quaternion.x * quaternion.y + quaternion.w * quaternion.z),
272 quaternion.w * quaternion.w + quaternion.x * quaternion.x - quaternion.y * quaternion.y - quaternion.z * quaternion.z);
273 }
274 template <Primitive T>
275 [[nodiscard]] constexpr vec<3, T> QuaternionToEuler(qua<T> const &quaternion) noexcept
276 {
277 return vec<3, T>(pitch(quaternion), yaw(quaternion), roll(quaternion));
278 }
279
280 template <Primitive T>
281 qua<T> constexpr conjugate(qua<T> const &q) noexcept
282 {
283 return qua<T>(q.w, -q.x, -q.y, -q.z);
284 }
285
286 template <Primitive T>
287 qua<T> constexpr inverse(qua<T> const &q) noexcept
288 {
289 return conjugate(q) / dot(q, q);
290 }
291
292 template <Primitive T, Primitive U>
293 constexpr vec<3, T> cross(qua<T> const &left, vec<3, U> const &right) noexcept
294 {
295 return left * right;
296 }
297 template <Primitive T, Primitive U>
298 constexpr vec<3, T> cross(vec<3, U> const &left, qua<T> const &right) noexcept
299 {
300 return inverse(right) * left;
301 }
302 template <Primitive T, Primitive U>
303 [[nodiscard]] constexpr qua<T> cross(qua<T> const &left, qua<U> const &right) noexcept
304 {
305 return qua<T>{
306 left.w *right.x + left.x * right.w + left.y * right.z - left.z * right.y,
307 left.w *right.y - left.x * right.z + left.y * right.w + left.z * right.x,
308 left.w *right.z + left.x * right.y - left.y * right.x + left.z * right.w,
309 left.w *right.w - left.x * right.x - left.y * right.y - left.z * right.z};
310 }
311
312 template <Primitive T>
313 [[nodiscard]] constexpr qua<T> QuaternionFromEuler(vec<3, T> const &angles) noexcept
314 {
315 vec<3, T> c = cos(angles * T(0.5));
316 vec<3, T> s = sin(angles * T(0.5));
317
318 return qua<T>{
319 c.x *c.y *c.z + s.x * s.y * s.z,
320 s.x *c.y *c.z - c.x * s.y * s.z,
321 c.x *s.y *c.z + s.x * c.y * s.z,
322 c.x *c.y *s.z - s.x * s.y * c.z
323 };
324 }
325 template <Primitive T>
326 [[nodiscard]] constexpr qua<T> QuaternionFromEuler(T roll, T pitch, T yaw) noexcept requires(std::is_floating_point_v<T>)
327 {
329 }
330 template <AnyMat U>
331 [[nodiscard]] constexpr qua<typename U::type> QuaternionFromRotationMatrix(U const &m) noexcept requires(U::size.x == 3 && U::size.y == 3 && std::is_floating_point_v<typename U::type>)
332 {
333 using T = typename U::type;
334 T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
335 T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
336 T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
337 T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
338
339 int biggestIndex = 0;
340 T fourBiggestSquaredMinus1 = fourWSquaredMinus1;
341 if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
342 {
343 fourBiggestSquaredMinus1 = fourXSquaredMinus1;
344 biggestIndex = 1;
345 }
346 if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
347 {
348 fourBiggestSquaredMinus1 = fourYSquaredMinus1;
349 biggestIndex = 2;
350 }
351 if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
352 {
353 fourBiggestSquaredMinus1 = fourZSquaredMinus1;
354 biggestIndex = 3;
355 }
356
357 T biggestVal = std::sqrt(fourBiggestSquaredMinus1 + static_cast<T>(1)) * static_cast<T>(0.5);
358 T mult = static_cast<T>(0.25) / biggestVal;
359
360 switch (biggestIndex)
361 {
362 case 0:
363 return qua<T>(biggestVal, (m[1][2] - m[2][1]) * mult, (m[2][0] - m[0][2]) * mult, (m[0][1] - m[1][0]) * mult);
364 case 1:
365 return qua<T>((m[1][2] - m[2][1]) * mult, biggestVal, (m[0][1] + m[1][0]) * mult, (m[2][0] + m[0][2]) * mult);
366 case 2:
367 return qua<T>((m[2][0] - m[0][2]) * mult, (m[0][1] + m[1][0]) * mult, biggestVal, (m[1][2] + m[2][1]) * mult);
368 case 3:
369 return qua<T>((m[0][1] - m[1][0]) * mult, (m[2][0] + m[0][2]) * mult, (m[1][2] + m[2][1]) * mult, biggestVal);
370 default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity.
371 assert(false);
372 return qua<T>(1, 0, 0, 0);
373 }
374 }
375 template <Primitive T>
376 [[nodiscard]] constexpr qua<T> operator*(qua<T> const &q, qua<T> const &p) noexcept
377 {
378 return qua<T>(q) *= p;
379 }
380 template <Primitive T>
381 [[nodiscard]] constexpr vec<3, T> operator*(qua<T> const &q, vec<3, T> const &v) noexcept
382 {
383 vec<3, T> const QuatVector(q.x, q.y, q.z);
384 vec<3, T> const uv(cross(QuatVector, v));
385 vec<3, T> const uuv(cross(QuatVector, uv));
386
387 return v + ((uv * q.w) + uuv) * static_cast<T>(2);
388 }
389
390 template <Primitive T>
391 [[nodiscard]] constexpr vec<3, T> operator*(vec<3, T> const &v, qua<T> const &q) noexcept
392 {
393 return inverse(q) * v;
394 }
395
396 template <Primitive T>
397 [[nodiscard]] constexpr qua<T> rotate(mat<4, 4, T> const &matrix, qua<T> const &q) noexcept
398 {
399 return rotate(matrix, q.w, vec<3, T>{q.x, q.y, q.z});
400 }
401
402 template <Primitive T>
403 [[nodiscard]] constexpr T length(qua<T> const &q) noexcept
404 {
405 return sqrt(dot(q, q));
406 }
407 template <Primitive T>
408 [[nodiscard]] constexpr qua<T> normalize(qua<T> const &q) noexcept
409 {
410 T l = length(q);
411 if (l <= static_cast<T>(0))
412 {
413 return qua<T>(1, 0, 0, 0);
414 }
415 T one_over_len = static_cast<T>(1) / l;
416 return qua<T>(q.w * one_over_len, q.x * one_over_len, q.y * one_over_len,
417 q.z * one_over_len);
418 }
419} // namespace mal_math
Contains mathematical utility functions and classes.
float cos(T x) noexcept
float asin(T x) noexcept
float sin(T x) noexcept
float acos(T x) noexcept
constexpr qua< T > conjugate(qua< T > const &q) noexcept
Computes the conjugate of a quaternion.
constexpr T length(qua< T > const &q) noexcept
Computes the length (or magnitude) of a quaternion.
constexpr mat< 4, 4, std::remove_const_t< typename T::type > > rotate(T const &matrix, U angle, V const &axis)
Rotates a matrix by a given angle around a given axis.
Definition mat_math.inl:256
constexpr T clamp(T x, T min, T max) noexcept
Function to clamp a value between a minimum and maximum.
constexpr mat< T::size.x, T::size.y, std::remove_const_t< typename T::type > > operator-(T const &left, U const right)
Subtracts a matrix from a primitive.
Definition mat_math.inl:100
constexpr T angle(qua< T > const &quaternion) noexcept
Computes the angle (or magnitude) of a quaternion.
constexpr qua< typename U::type > QuaternionFromRotationMatrix(U const &mat) noexcept
Creates a quaternion from a 3x3 rotation matrix.
constexpr auto operator*(U const &lhs, V const &rhs)
Multiplies two matrices.
Definition mat_math.inl:33
constexpr vec< 3, T > QuaternionToEuler(qua< T > const &quaternion) noexcept
Converts a quaternion to Euler angles.
T abs(T x) noexcept
constexpr T yaw(qua< T > const &quaternion) noexcept
Computes the yaw from a quaternion.
constexpr T roll(qua< T > const &quaternion) noexcept
Computes the roll from a quaternion.
float sqrt(T x) noexcept
constexpr std::istream & operator>>(std::istream &is, U &matrix)
Reads a matrix from an input stream.
Definition mat_math.inl:8
constexpr mat< T::size.x, T::size.y, std::remove_const_t< typename T::type > > inverse(T const &matrix)
Calculates the inverse of a square matrix.
Definition mat_math.inl:240
constexpr T radians(T x) noexcept
Function to convert degrees to radians.
constexpr std::ostream & operator<<(std::ostream &os, U const &matrix)
Writes a matrix to an output stream.
Definition mat_math.inl:20
constexpr T dot(qua< T > const &left, qua< U > const &right) noexcept
Computes the dot product of two quaternions.
constexpr qua< T > normalize(qua< T > const &q) noexcept
Normalizes a quaternion.
constexpr mat< T::size.x, T::size.y, std::remove_const_t< typename T::type > > operator+(U const left, T const &right)
Adds a matrix to a primitive.
Definition mat_math.inl:105
constexpr qua< T > QuaternionFromEuler(vec< 3, T > const &angles) noexcept
Creates a quaternion from Euler angles given in a vector.
constexpr T pitch(qua< T > const &quaternion) noexcept
Computes the pitch from a quaternion.
constexpr qua< T > operator/(U const value, qua< T > const &vector) noexcept
Scalar-quaternion division.
constexpr vec< 3, T > cross(qua< T > const &left, vec< 3, U > const &right) noexcept
Cross product between quaternion and vector.
Quaternion operations and related mathematical functions.
Definition of matrix with dimensions rows x columns and type T
Definition matnxn.hpp:39
Represents a quaternion with primitive type T.
constexpr qua< T > & operator*=(U const value) noexcept
Multiplies the quaternion by a scalar value.
constexpr mat< 3, 3, T > as_mat3() const noexcept
Converts the quaternion to a 3x3 rotation matrix.
constexpr void reset()
Resets the quaternion to its default state (1, 0, 0, 0).
constexpr T & operator[](size_t i)
Accesses a component of the quaternion by index.
constexpr mat< 4, 4, T > as_mat4() const noexcept
Converts the quaternion to a 4x4 rotation matrix.
constexpr qua()
Default constructor initializes the quaternion to its default state (1, 0, 0, 0).
constexpr qua< T > const & operator+() const noexcept
Unary plus operator.
constexpr qua< T > operator-() const noexcept
Unary minus operator. Inverts the sign of each component.
constexpr vec< 3, T > const & axis() const noexcept
Retrieves the axis of rotation from the quaternion.
constexpr qua< T > & operator-=(qua< U > const &other) noexcept
Subtracts another quaternion from this quaternion component-wise.
constexpr T radians() const noexcept
Retrieves the angle of rotation from the quaternion.
constexpr qua< T > & operator/=(U const value) noexcept
Divides the components of the quaternion by a scalar value.
constexpr qua< T > & operator+=(qua< U > const &other) noexcept
Adds another quaternion to this quaternion component-wise.
Definition of the mathematical vector with fixed size L and type T
Definition vecn.hpp:22